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Abstract. A definition of metastable states applicable to arbitrary finite state Markov processes satisfying
detailed balance is discussed. In particular, we identify a crucial condition that distinguishes genuine
metastable states from other types of slowly decaying modes and which leads to properties similar to those
postulated in the restricted ensemble approach [1]. The intuitive physical meaning of this condition is
simply that the total equilibrium probability of finding the system in the metastable state is negligible. As
a concrete application of our formalism we present preliminary results on a 2D kinetic Ising model.

PACS. 02.50.Ga Markov processes – 05.20.Gg Classical ensemble theory – 05.70.Ln Nonequilibrium and
irreversible thermodynamics

1 Introduction

In equilibrium statistical mechanics, it has been accepted
for a long time that the canonical ensemble provides, at
least for the vast majority of systems, an adequate de-
scription of their properties. It could be argued that this
essentially reduces the problem of understanding equilib-
rium properties to one of computation. On the other hand,
for statistical mechanics far from equilibrium things are
quite different: there are no laws corresponding to the
Gibbs ensembles in order to calculate the probabilities of
a given configuration in general, and the situation is still
extremely complex.

In this respect, metastable states occupy a curiously
intermediate position: they are generally viewed as equi-
librium states, i.e. as having a well-defined free energy,
which is however distinct from that of the corresponding
equilibrium state. Nevertheless, it is also clear that such
states eventually decay through a process of nucleation
which brings the metastable state to a true equilibrium
state which is physically quite different.

Traditionally, there have been many attempts to jus-
tify associating some equilibrium state to metastability
through analytic continuation of the free energy. The old-
est of these is, of course, the one due to van der Waals,
which indeed works perfectly for mean-field theory. For
models with short-range interactions, however, matters
are more complicated: it has been shown [2] that the
free energy has an essential singularity at the coexistence
curve. Langer [2] provided a way to define an appropriate
analytical continuation across the existing cut and gave a
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clear picture of the cause of the singular behaviour: it is, in
fact, due to the presence of the droplets which eventually
nucleate the equilibrium phase.

In what follows we pursue a purely dynamical point
of view of this problem. That is, we start from the main
dynamical features of a metastable state and suggest a
reasonable definition in terms of dynamic features alone.
We then show that the metastable state thus defined can
indeed be viewed as the restriction of the equilibrium en-
semble onto a suitably defined subset. To achieve this goal,
however, we must pay a (considerable) price: we must as-
sume the system obeys very simplified dynamics, namely
Markov chains satisfying detailed balance. Further, we
shall concern ourselves strictly with finite systems and
shall not take the thermodynamic limit. In part this is
due to the fact that real difficulties arise when this limit
is taken: since arbitrarily unlikely fluctuations will arise
in arbitrarily short times in a sufficiently large system,
it turns out that nucleation eventually becomes instan-
taneous in the thermodynamic limit, which is clearly an
artefact. A typical way around this problem might be to
take a simultaneous limit to systems of infinite size as well
as to parameters ever closer to the coexistence curve. We
shall instead simply study the finite, though large, system.

The phenomenon of metastability may be described
informally as follows (see [1,3] for a much fuller discussion
along similar lines): a system is said to be in a metastable
state if, upon starting the system in a certain subset of
initial conditions, the system remains for a very long time
in this limited subset of the set of all configurations, which
is of negligible measure in equilibrium. Further, this sub-
set is macroscopically distinct from the equilibrium state.
Also, the return to equilibrium from a metastable state
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usually occurs in an abrupt fashion, i.e. the macroscopic
variables do not change slowly from their metastable val-
ues to their equilibrium values, but rather, they remain
essentially constant and then suddenly relax to their equi-
librium value, by some quick relaxation mechanism. The
requirement that the time during which the system re-
mains in a metastable state be “large” means simply that
it is sufficient to allow the system to relax to some kind
of pseudo-equilibrium state. Thus, in a metastable state,
the values of the macroscopic observables of interest will
not show any systematic time-dependence, at least after
some initial transient, the duration of which is much less
than the decay time of the metastable state.

The results presented in this work are derived for
generic ergodic, acyclic Markov processes satisfying de-
tailed balance with respect to the Gibbs measure. The typ-
ical system we have in mind is the finite kinetic 2D Ising
model, which we discuss in Section 3.

Note finally that in this paper we shall limit ourselves
to systems with short-range interactions, for which ensem-
ble equivalence is guaranteed by standard theorems [4]. In
other cases, some more delicate issues may arise, as shown
recently in [5]. There it was shown that for systems involv-
ing long-range interactions, a metastable state may actu-
ally become stable in an appropriately modified ensemble.
Such issues do not, however, concern us, as we adress the
question of defining metastability in a context in which
a thermodynamic definition is not possible. For systems
with long-range interactions, however, it is straightfor-
ward to define metastability within an equilibrium theory,
so we do not discuss such systems here.

2 General formalism

Let us consider a Markov chain on a finite state space Γ
with rates Wσ→σ′ , where σ and σ′ denote states of Γ . The
master equation for the probability of the system being
found in state σ is given by

∂tP (σ) = LP ;

LP =
∑

σ′
Wσ′→σP (σ′) − P (σ)

∑

σ′
Wσ→σ′ . (1)

Since the Markov chain is assumed to be ergodic and
acyclic [6], well-known theorems assert that the solution
approaches a unique equilibrium P0(σ). If we further as-
sume that detailed balance holds, that is,

Wσ′→σP0(σ′) = Wσ→σ′P0(σ), (2)

then it is also well known that the operator L defined
in (1) is self-adjoint with respect to the scalar product

(Φ, Ψ) =
∑

σ

Φ(σ)Ψ(σ)
P0(σ)

. (3)

Since the underlying vector space is finite-dimensional, it
then follows that there is a complete orthonormal set of
eigenvectors Pn satisfying

LPn = −ΩnPn, (4)

where the Ωn are by definition arranged in increasing or-
der. The existence of an equilibrium distribution implies
that Ω0 = 0 and the corresponding P0 is in fact the equi-
librium distribution. All other Ωn are strictly positive.

Using the orthonormality of the Pn we can write
∑

σ

Pn(σ) = δn,0, (5)

implying that P0(σ) is normalized and that adding to it
arbitrary multiples of Pn(σ), for n ≥ 1, does not alter this
normalization.

One then arrives using standard techniques [7] at a
formal expression for the probability of arriving from σ0

to σ in time t:

P (σ, t; σ0, 0) = P0(σ) +
∞∑

n=1

Pn(σ)Pn(σ0)
P0(σ0)

e−Ωnt. (6)

We now turn to the characterization of a metastable state
within the general setting outlined above. In view of the
informal description of metastability sketched in the intro-
duction, it is clear that if we wish to have a behaviour dif-
ferent from equilibrium over a large time scale, one needs
that at least one of the Ωn be much closer to zero than
the rest.

Let us assume that Ω1 � Ωn for all n ≥ 2. Now
consider a process evolving from the initial condition σ0.
Then, following (6), in the relevant time range Ω−1

2 �
t � Ω−1

1 , one finds that the configuration σ is occupied
with the following (time-independent) probability

P (σ) = P0(σ) +
P1(σ0)
P0(σ0)

P1(σ). (7)

Note that, due to (5), this is normalized. Since it differs
exponentially little from the exact result, we may also
conclude that it is everywhere positive, except perhaps in
some places where it assumes exponentially small negative
values; the latter can be fixed by setting the offending neg-
ative values to zero and recomputing the normalization.

This result focuses our attention on the value
P1(σ0)/P0(σ0), which characterizes the nature of the ini-
tial condition. This quantity will be central to understand-
ing the conditions under which the initial condition can
truly be called metastable and the resulting probability
distribution given by (7) can justifiably be identified with
that of a metastable state. Let us be more specific.

In what follows, we denote P1(σ)/P0(σ) by C(σ), and
the maximum value of C(σ) by C. Next we define the two
sets Γm and Γeq as follows:

Γm :=
{

σ :
C

2
≤ C(σ) ≤ C

}
, (8)

and Γeq is defined to be the complement of Γm. The choice
of the factor 1/2 to define the lower bound on C(σ) in (8)
is purely arbitrary and a matter of convention.

We will show that given the previous scenario, the sys-
tem will have a metastable state, in the sense discussed in
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the introduction, if
∑

σ∈Γm

P0(σ) � 1, (9)

i.e. that the probability of being found in Γm in equilib-
rium is negligibly small, and we define the “metastable
state” as the state described by the probability distribu-
tion

Pm(σ) = P0(σ) + CP1(σ). (10)

It should be stressed that, from a physical point of view,
condition (9) is the crucial assumption: it allows to dis-
tinguish true metastable states from other slowly decay-
ing states. Of course, in concrete instances this hypothesis
will not be easy to prove rigorously, and, for this reason,
our approach is in a sense somewhat formal. We shall,
however, show that a large number of consequences follow
from (9). It is therefore sufficient to prove (9) to show that
the restricted state approach to the statistical description
of metastable states is applicable. (Note that the impor-
tance of (9) was already pointed out in [1,3].)

In what follows we will show that the properties of
systems in which assumption (9) holds give rise to a be-
haviour which can be identified as metastabilty. These
properties are:

1. The probability that a state evolving from an initial
condition σ0 for which C(σ0) = C (or very close to it)
leaves Γm in a time less than t is of order Ω1t. This
justifies identifying such a state as a very persistent
one. From this result it also follows that

∑

σ∈Γeq

[P0(σ) + CP1(σ)] � 1. (11)

From this inequality and the positivity properties dis-
cussed above, we conclude that

P1(σ) ≈ −C−1P0(σ), σ ∈ Γeq. (12)

Note, however, that the above feature is not enough to
characterize a metastable state. A slowly decaying hy-
drodynamic mode, say, would have the same property.

2. The probability that a state is found in Γeq after a
time of order Ω−1

2 , evolving from an initial condition σ0

such that C(σ0) = (1−p)C, is p. On the other hand, if
the state has remained in Γm for a time of order Ω−1

2 ,
then the value of C(σt) grows to values very close to C
on the same time scale. These results are crucial, be-
cause they mean that systems which have C(σ0) �= C
relax fast either to equilibrium or to the metastable
state. Once they are in the metastable state, they can
be described by the probability distribution Pm(σ) de-
fined in (10). In order to prove this characteristic prop-
erty, we have to make use of the defining property of
metastable states (9).

3. Finally, if we define a new process in which all transi-
tion rates connecting the metastable region Γm defined
by (8) to Γeq are set equal to zero, we obtain another
Markov process, also satisfying detailed balance with

respect to the restriction of P0(σ) to Γm. We show that
if both processes are started from the same initial con-
dition σ0 satisfying C(σ0) = C then the two processes
remain close (in the sense of distance in variation) over
a time of order Ω−1. This result leads to

P1(σ) ≈ CP0(σ), σ ∈ Γm (13)

and

2 lnC = ln
∑

σ∈Γeq

P0(σ) − ln
∑

σ∈Γm

P0(σ), (14)

which is interpreted in a natural way as the free energy
difference between the two phases.
Note that this final result also allows to carry over
standard results valid for equilibrium systems to the
metastable case: one first applies the result to the re-
stricted process, which is a bona fide Markov process
defined on Γm for all times, and then extends it to the
metastable case by arguing that the two processes are
close for the relevant timescale Ω−1

2 � t � Ω−1
1 . In

particular, the result derived in [8] can partly be red-
erived in this way: the fluctuation–dissipation theorem
holds in metastable states of the kind we describe, be-
cause it can be derived as a general property of Markov
processes with detailed balance.

The above results therefore indicate that the program
of defining a restricted equilibrium ensemble to describe
metastability can be carried out in a fairly rigorous fashion
in the context of Markovian proceses satisfying detailed
balance.

For a detailed derivation of these results, see [7,9]. Here
we content ourselves with a rough sketch of how they come
about. Note first the following basic property:

E
(

eΩ1t′C(σ(t′))
∣∣∣ σ(t)

)
= eΩ1tC(σ(t)) (t < t′), (15)

where σ(t) denotes a path of the Markov process defined
by (1), and E denotes the expectation value. This relation
is easily verified by a straightforward computation and
means that eΩ1tC(σ(t)) is a martingale.

To prove point (1), assume that the initial condition σ0

satisfies C(σ0) = C. Now (15) means that, on average,
C(σ)eΩ1t should neither go up nor down. Since it starts at
the highest possible value of C(σ), it has nowhere to go but
down (on short time scales this is not significantly changed
by the factor eΩ1t). Therefore going down a significant
amount is unlikely. It is therefore not likely to leave Γm

in the relevant time scale.
Point (2) is more technical: it can be shown that the

condition (9) implies that P0 and P0 + CP1 are substan-
tially different from zero on two disjoint sets. Therefore,
if the initial condition σ0 satisfies C(σ0) = (1 − p)C, it
evolves into a state given by

P (p)(σ) = P0(σ) + (1 − p)CP1(σ)
= pP0(σ) + (1 − p) [P0(σ) + CP1(σ)] . (16)
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But this state can be interpreted as being in the equilib-
rium state with probability p or in the metastable state
with probability 1 − p.

For point (3) consider the restricted process, where the
rates are defined by

WR
σ′→σ =

{
Wσ′→σ σ, σ′ ∈ Γm or σ, σ′ ∈ Γeq

0 otherwise. (17)

This process satisfies detailed balance with respect to P0,
just as does the original process. The trajectories of the
physical process starting from σ0 with C(σ0) = C have the
same probabilities as the corresponding trajectories of the
restricted process except when the former cross from Γm

to Γeq. But, as was shown in point (1), such crossings are
unlikely, so the two processes indeed remain close to each
other in the relevant time range.

3 An application: the Ising model

We now proceed to discuss how these ideas can be applied
concretely to the case of the 2D kinetic Ising model. As is
well known, if T < Tc and a small magnetic field h is ap-
plied, then the spontaneous magnetization in equilibrium
points in the direction of the field. There is, however, for
a broad range of parameters, a metastable state for which
the magnetization is in the direction opposite to the field.

We wish to show a way to obtain some confirma-
tion of the ideas described above through simulations
of this system. A crucial issue is to identify the observ-
ables which play an essential role in determining C(σ)
and hence Γm. For the ferromagnetic Ising model, we as-
sume that these observables reduce simply to the spin in-
teraction energy E(σ) and the magnetization M(σ). For
systems of the size we consider presently, it is not pos-
sible for a nucleating droplet, which is the crucial factor
determining whether a system is or is not about to nu-
cleate, to appear without noticeably affecting the values
of E and M . We therefore assume that

C(σ) = Φ [E(σ), M(σ)] , (18)

which defines Φ(E, M).
The equilibrium probability of a configuration σ is

P0(σ) ∝ exp [−βE(σ) + βhM(σ)] , (19)

where β := 1/T . Summing over all configurations σ having
the same value of E and M , the equilibrium probability
that the system is in the macrostate (E, M) is

P0(E, M) ∝ g(E, M) exp [−β(E − hM)] . (20)

Here, g(E, M) is the density of states of the Ising model,
given by

g(E, M) =
∑

σ

δ [E − E(σ)] δ [M − M(σ)] . (21)

This can be computed numerically in an efficient manner,
say using the Wang–Landau algorithm [10,11].
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Fig. 1. Free energy F (M ; β, h) of the 2D Ising model (see (22)
for the definition) for a 32 × 32 sample with β := 1/T = 0.5,
i.e. significantly below criticality. Note the secondary minima
for 0 �= |h| < 0.05, which are quite pronounced in spite of our
considering a fairly large system.

In the metastable region Γm one has Pm = P0+CP1 =
(1 + C2)P0, so that Pm can also be expressed in terms
of E and M using (20). Since the metastable state is well
characterized by specific values of E and M , it is to be
expected that the expression on the r.h.s. of (20) will show
a local maximum at these non-equilibrium values. This is
confirmed numerically for P0(E, M) as a function of E
and M [9].

Here we plot in Figure 1 the free energy

F (M ; β, h) := − 1
β

ln
∑

E

g(E, M) exp[−β(E−hM)] (22)

at a fixed subcritical temperature. A secondary minimum
is seen in Figure 1, which corresponds to the metastable
maximum of P0. Such a state of affairs will not exist in the
thermodynamic limit: indeed, up to an additive term hM ,
F (M ; β, h) is the free energy of the Ising model in an en-
semble of fixed temperature and magnetization. By stan-
dard theorems on short-range systems [4], this must be
equivalent in the thermodynamic limit to the free energy
computed as the Legendre transform of the Gibbs poten-
tial calculated in the grand canonical ensemble. Hence, as
the thermodynamic limit is approached, F (M ; β, h) must
tend to a convex function in M , and the additive term hM
does not alter this fact. This is clearly at odds with the
presence of two minima in F (M ; β, h) as shown in Fig-
ure 1. Therefore, our identification of E and M as ade-
quate variables to determine C(σ) is not tenable beyond
a certain sample size. This is in agreement with the fact
that for large systems a nucleating droplet may appear
without affecting the values of E and M .

In the systems in which E and M do furnish a complete
description, it is possible to determine C and hence the
free energy difference betwen the stable and metastable
phase as follows: (14) yields C as a function of the prob-
ability of finding the system in Γm in equilibrium. Since
we have identified Γm with a certain part of (E, M) space,
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we can readily compute this probability once g(E, M) is
known. This free energy difference can also be compared
with one obtained from hysteresis curves, and the compar-
ison is quite satisfactory. These results will be discussed
more extensively in [9]. Finally, extensions of this formal-
ism to systems characterized by having several metastable
states appear possible and are also presently under way.
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6. P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo
Simulations and Queues, Texts in Applied Mathematics
(Springer, New York, 1999), Vol. 31

7. H. Larralde, F. Leyvraz, Phys. Rev. Lett. 94, 160201
(2005)
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